UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE ### ECOLOGICAL SITE DESCRIPTION ## ECOLOGICAL SITE CHARACTERISTICS | Site Type: Rangeland | | |--------------------------------|--------| | Site ID: <u>R036XB128NM</u> | | | Site Name: Clayey | | | Precipitation or Climate Zone: | 10-16" | | Phase: | | ## PHYSIOGRAPHIC FEATURES | Narrative: | | | | | |---|-------------|-------------|--|--| | This site occurs on moderately sloping valley side slopes. It can also occur as sloping benches or rolling hills above valley bottoms and floodplain positions. Slopes range from 5 to 15 percent. Elevations range from 6,000 to 7,300 feet. | T 15 | | | | | | Land Form: 1. hillside | | | | | | 2. valley side | | | | | | 3. sloping benches | | | | | | | | | | | | Aspect: | | | | | | not significant 2. | | | | | | 3. | | | | | | <i>.</i> | | | | | | | Minimum | Maximum | | | | Elevation (feet) | 5900 | 7800 | | | | Slope (percent) | 1 | 24 | | | | Water Table Depth (inches) | | | | | | Flooding: | Minimum | Maximum | | | | Frequency | none | rare | | | | Duration | none | Very brief | | | | D 11 | 7.61.1 | | | | | Ponding: | Minimum | Maximum | | | | Depth (inches) Frequency | | | | | | Duration | | | | | | <u> </u> | | | | | | Runoff Class: | | | | | | Medium to very high | | | | | | Hydrologic units B. C.& D. | | | | | ### **CLIMATIC FEATURES** #### Narrative: Average annual precipitation varies from about 10 inches to just over 16 inches. Fluctuations ranging from about 5 inches to 25 inches are not uncommon. The overall climate is characterized by cold dry winters in which winter moisture is less than summer. As much as half or more of the annual precipitation can be expected to come during the period of July through September. Thus, fall conditions are often more favorable for good growth of cool-season perennial grasses, shrubs, and forbs than are those of spring. The average frost-free season is about 120 days and extends from approximately mid-May to early or mid-September. Average annual air temperatures are 50 degrees F or lower and summer maximums rarely exceed 100 degree F. Winter minimums typically approach or go below zero. Monthly mean temperatures exceed 70 degree F for the period of July and August. Rainfall patterns generally favor warm-season perennial vegetation, while the temperature regime tends to favor cool-season vegetation. This creates a somewhat complex community of plants on a given range site which is quite susceptible to disturbance and is at or near its productive potential only when both the natural warm- and cool- season dominants are present. | | Minimum | Maximum | |-------------------------------------|---------|---------| | Frost-free period (days): | 51 | 171 | | Freeze-free period (days): | 130 | 252 | | Mean annual precipitation (inches): | 10 | 16 | Monthly moisture (inches) and temperature (⁰F) distribution: | · | Precip. Min. | Precip. Max. | Temp. Min. | Temp. Max. | |-----------|--------------|--------------|------------|------------| | January | .40 | .91 | 12.9 | 47.0 | | February | .43 | .65 | 16.6 | 51.2 | | March | .47 | 1.10 | 20.9 | 57.1 | | April | .30 | .49 | 26.1 | 65.3 | | May | .46 | .98 | 33.4 | 74.2 | | June | .51 | .57 | 41.4 | 84.2 | | July | 2.15 | 3.45 | 50.4 | 85.1 | | August | 2.28 | 3.03 | 48.7 | 82.4 | | September | 1.29 | 1.68 | 41.4 | 77.9 | | October | .81 | 1.12 | 29.4 | 69.2 | | November | .38 | .71 | 19.1 | 57.3 | | December | .53 | .95 | 13.1 | 48.9 | | Climate Stat | tions: | | | | | | | |------------------------------|----------------------------|------------------|---------------------|-------|--------|-----|--------| | | | | | | Perio | | | | Station ID | 290640 | Location | Augustine 2E | From: | 05/01/ | To | 07/31/ | | | | | | | 26 | : | 00 | | | | | | _ | | • | | | Station ID | 296812 | Location | Pietown 19NE | From: | 09/01/ | То | 07/31/ | | | | | | | 88 | : | 00 | | | | | | _ | Perio | od | | | Station ID | 297180 | Location | Quemado | From: | 08/01/ | To | 07/31/ | | | | | | | 15 | : | 00 | | | | | | _ | Perio | - | | | | | | | | | | | | NELLIENC | ING WATER | FEATURES | | | | | | | INITLOLING | ING WAILK | PEATURES | | | | | | | | not influenced b | oy water from we | etlands or streams. | | | | | | Narrative:
This site is r | ot influenced t | oy water from we | etlands or streams. | | | | | | This site is r | cription:
System | | etlands or streams. | | Cla | ass | | | This site is r | cription: | | | | Cla | ass | | | This site is r | cription:
System
N/A | | Subsystem | | Cla | ıss | | | This site is r | cription:
System
N/A | | Subsystem | | Cla | ıss | | ### REPRESENTATIVE SOIL FEATURES ### Narrative: Soils are typically moderately fine to fine-textured on the surface (clay loam, clay, silty clay loam) over fine textured subsoils. They are usually deep, but may be moderately deep. Water intake rates are slow to moderately slow. Permeability is slow, and water-holding capacity is high. Runoff from this site is usually excessive in the absence of adequate vegetative cover. It may also be excessive during periods of heavy rainfall or spring snowmelt. The erosion hazard is high when the vegetative cover deteriorates. | Parent Material Kind: | alluvium | |-------------------------|---| | Parent Material Origin: | Mixed- derived from shale and sandstone | ### Surface Texture: | ~ ~ | | |-----|-----------------| | 1. | clay | | 2. | silty clay loam | | 3 | clay loam | ### Surface Texture Modifier: | 1. N/A | | |--------|--| | 2. | | | 3. | | Subsurface Texture Group: N/A Surface Fragments <=3" (% Volume): - Surface Fragments >3" (% Volume): - Subsurface Fragments <=3" (% Volume): 2-36 Subsurface Fragments >=3" (% Volume): ---2 | | Minimum | Maximum | |---|-------------|-----------------| | Drainage Class: | | well | | Permeability Class: | impermeable | Moderately slow | | Depth (inches): | 0 | 75 | | Electrical Conductivity (mmhos/cm): | 0.00 | 8.00 | | Sodium Absorption Ratio: | 0.00 | 13.00 | | Soil Reaction (1:1 Water): | 6.6 | 9.0 | | Soil Reaction (0.1M CaCl2): | | | | Available Water Capacity (inches): | 2 | 8 | | Calcium Carbonate Equivalent (percent): | | | ### PLANT COMMUNITIES ### **Ecological Dynamics of the Site:** #### Overview This site occurs on flood plains, valley sides, sideslopes of hills and mesa tops. It is associated with Loamy, Clayey Bottomland, and Malpais sites. It occurs as a distinct unit adjacent to or as part of a mosaic with these sites. The historic plant community of the Clayey site is a grassland characterized by both warm and cool-season grasses, scattered shrubs, and forbs. The clayey site is dominated by alkali sacaton and western wheatgrass. Fourwing saltbush and winterfat are common shrubs. Forbs can occur in high relative abundance in years with above-average rainfall. Decreased available soil moisture due to blocked or redirected flow of run-on water, loss of grass cover, and gullying can cause a transition to a less productive Dry Grassland State. Continued loss of grass cover and soil surface sealing may result in a state with extensive areas of bare ground. Loss of grass cover and decreased soil moisture can decrease competition by grasses, facilitating shrub encroachment and result in a Shrub-Dominated state. Plant Communities and Transitional Pathways (diagram) ### MLRA 36, WP-2 Clayey # MLRA 36; WP-2; Clayey ## Grassland - •Alkali sacaton, western wheatgrass, galleta with scattered 4-wing saltbush and winterfat. - •Grass cover fairly uniform - •Hawaikuh silt loam, McKinley Co., NM. ## Dry-Grassland - •Blue grama, galleta, with clumps of alkali sacaton and scattered 4-wing saltbush. - •Grass cover patchy with large bare areas. - •Bare areas sealed by physical crusts - •Hawaikuh silt loam, McKinley Co., NM. | Plant Community Name: | | | | | |---|-----------|------------------|------|--| | Plant Community Sequence | Number: 1 | Narrative Label: | НСРС | | | Plant Community Narrative: State Containing Historic F | | | | | **Grassland State:** The historic plant community is dominated by alkali sacaton and western wheatgrass. Other important grasses that appear on this site include galleta, blue grama, and bottlebrush squirreltail. Fourwing saltbush and winterfat are the dominant shrubs. Rabbitbrush and broom snakeweed may also be sparsely scattered across the site. Continuous heavy grazing will typically cause a decrease in western wheatgrass. A community dominated by alkali sacaton with blue grama or galleta as the subdominant may result. In other instances, especially on the heavier textured clay soils, a sparser, less productive, near monotypic stand of western wheatgrass may persist. <u>Diagnosis:</u> Grass cover is uniform with few large bare connected areas present. Shrubs are scattered with canopy cover averaging five percent or less. Evidence of erosion such as pedestalling of grasses, rills and gullies are infrequent. | Ground Cover (Average Percent of Surface Area). | | | |---|-------|--| | Grasses & Forbs | 25 | | | Bare ground | 65 | | | Surface gravel | | | | Surface cobble and stone | | | | Litter (percent) | 10-15 | | | Litter (average depth in cm.) | 0-1 | | | Surface Gravel (% cover) | | | ### Plant Community Annual Production (by plant type): ### Annual Production (lbs/ac) | Plant Type | Low | RV | High | |--------------------|-----|------|------| | Grass/Grasslike | 600 | 750 | 900 | | Forb | 60 | 75 | 90 | | Tree/Shrub/Vine | 80 | 100 | 120 | | Lichen | | | | | Moss | | | | | Microbiotic Crusts | | | | | Totals | 800 | 1000 | 1200 | ## Plant Community Composition and Group Annual Production: Plant Type - Grass/Grasslike | ~ 1 | - Grass/Gras | SHKC | | _ | |--------|--------------|--------------------------|------------|------------| | Group | Scientific | | Species | Group | | Number | Plant | Common Name | Annual | Annual | | | Symbol | | Production | Production | | 1 | SPAI | Alkali sacaton | 200-250 | 200-250 | | | SPWR2 | Giant sacaton | | | | 2 | PASM | Western wheatgrass | 200-300 | 200-300 | | 3 | PLJA | Galleta | 100-150 | 100-150 | | 4 | BOGR2 | Blue grama | 50-200 | 50-200 | | 5 | PAOB | Vine-mesquite | 0-50 | 0-50 | | 6 | ELEL5 | Bottlebrush squirreltail | 50-100 | 50-100 | | | ACHY | Indian ricegrass | | | | 7 | MUWR | Spike muhly | 30-50 | 30-50 | | 8 | MURI | Mat muhly | 10-50 | 10-50 | | 9 | SPORO | Dropseed spp. | 10-50 | 10-50 | | 10 | | others | 10-50 | 10-50 | Plant Type - Tree/Shrub/Vine | Traint Type | - TICC/Siliub | / VIIIC | | | |-------------|---------------|-------------------|------------|------------| | Group | Scientific | | Species | Group | | Number | Plant | Common Name | Annual | Annual | | | Symbol | | Production | Production | | 11 | ATCA2 | Fourwing saltbush | 50-100 | 50-100 | | | KRLA2 | Winterfat | | | | 12 | GUSA2 | Broom snakeweed | 10-50 | 10-50 | | | ERNAN5 | Rabbitbrush | · | | | | Plant | Type | - Forb | |--------|-------|--------| | 1 Iuii | 1 1 1 | 1 010 | | 13 | 2FP | Perennial forbs | 10-80 | 10-80 | |----|-----|-----------------|-------|-------| | 14 | 2FA | Annual forbs | 10-50 | 10-50 | Plant Type - Lichen | Group
Tumber | Scientific
Plant
Symbol | Common Name | Species Annual Production | Group
Annual
Production | |-----------------|-------------------------------|-------------|---------------------------|-------------------------------| | | | | | | | | | | | | Plant Type - Moss | | Group
Number | Scientific
Plant
Symbol | Common Name | Species Annual Production | Group
Annual
Production | |---|-----------------|-------------------------------|-------------|---------------------------|-------------------------------| | - | | | | | | | | | | | | | Plant Type - Microbiotic Crusts | Group
Number | Scientific
Plant | Common Name | Species
Annual | Group
Annual | |-----------------|---------------------|-------------|-------------------|-----------------| | | Symbol | | Production | Production | | | | | | | | | | | | | | | | | | | Plant Growth Curves Growth Curve ID NM 0318 Growth Curve Name: HCPC Growth Curve Description: WP-2 Clayey - HCPC Warm/Cool season perennial plant community. | Jan. | Feb. | March | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |------|------|-------|-------|-----|------|------|------|-------|------|------|------| | 0 | 0 | 8 | 15 | 10 | 9 | 20 | 25 | 8 | 5 | 0 | 0 | | | | | | | | | | | | | | ### **Additional States:** <u>Dry Grassland:</u> This site is characterized by decreased available soil moisture, decrease in grass cover and a change in species composition. Typically galleta or blue grama is the dominant grass species. Alkali sacaton, if present, is generally found in clumps or tussocks with interconnected bare areas between plants, or in patches on wetter low-lying spots. <u>Diagnosis:</u> Grass cover is typically patchy with large interconnected bare areas present. Blue grama or galleta is the dominant grass species. Rills, gullies, or obstructions to overland flow are present. **Transition to Dry Grassland (1a):** Soil drying due to blocked or redirected flow of run-on water, loss of grass cover, or gullying are thought to initiate this transition. Water retention or diversion structures, sediment deposition, or roads may block or divert water that would naturally flow onto the site. Roads or trails may concentrate water during high flow periods and facilitate gully formation. Loss of adequate grass cover due to overgrazing can decrease infiltration, increase flow rates, and initiate gullying. Key indicators of approach to transition: - Reduction in western wheatgrass and alkali sacaton cover and increase in size and frequency of bare patches. - Increase in cover of blue grama, galleta, ring muhly and mat muhly. - The formation of trails, gullies or other features that disrupts natural overland flow **Transition back to Grassland (1b)** The natural hydrology of the site must be restored. Erosion control structures, shaping or filling gullies, culverts, turnouts, or moving or re-routing obstructions may be necessary to restore natural run-on flow patterns. Prescribed grazing will help restore and maintain adequate grass cover. **Shrub-Dominated**: This state is characterized by the predominance of shrubs, especially rabbitbrush. Broom snakeweed and cacti species may also increase in representation. Blue grama, galleta, and alkali sacaton are typically the dominant grass species. However, alkali sacaton may be sparse if the transition to this state was from the Dry Grassland. **Diagnosis**: Rabbitbrush is found at increased densities relative to the Grassland state. Grass cover is patchy with large bare areas present. Evidence of erosion including pedestalling of plants, elongated water flow patterns, litter dams, and rills or gullies is common. **Transition to Shrub-Dominated (2, 3a)** Loss of grass cover and resulting decreased competition by grasses is believed to initiate this transition. The loss of grass cover may be due to a change in hydrology, overgrazing, or other disturbance such as fire. Rabbitbrush is believed to increase under heavy grazing pressure⁴ and after 1-3 years following fire⁵. Key indicators of approach to transition: - Decrease or change in composition or distribution of grass cover. - Increase in size and frequency of bare patches. - Increase in amount of shrub seedlings. **Transition back to Grassland (3b)** Brush control is necessary to initiate the transition back to the grassland state. Chemical control has been shown to be effective in controlling rabbitbrush.¹, Root plowing and other mechanical methods that sever the plant below the root crown may reduce rabbitbrush densities. Follow up treatment may be necessary. Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover. In addition the natural hydrology of the site must be restored if the transition pathway was from Dry Grassland to Shrub-Dominated (2). See Transition Back to Grassland (1b). Bare State: Extensive areas of bare ground characterize this site. Surface soils in most bare areas are sealed over with physical crusts. Herbaceous cover consists mainly of annuals. If perennial grasses are present, they occur only in isolated patches. Diagnosis: Annuals are the dominant herbaceous vegetation. Extensive interconnected bare areas are common with scattered or no grass plants. Evidence of erosion such as rills and gullies are present. Transition to Bare State (4) The continued loss of remaining grass cover due to overgrazing or soil drying may cause this transition. The subsequent sealing of the soil surface by physical crusts reduces infiltration and inhibits grass reestablishment.2 Transition back to Grassland (5) The hydrology of the site must be restored first (see 1b). Seeding is necessary to reestablish grasses. Prescribed grazing will help ensure adequate rest and proper forage utilization following grass establishment. The degree to which this site is capable of recovery depends on the restoration of hydrology, the extent of degradation to soil resources, and adequate rainfall necessary to establish grasses. ## ECOLOGICAL SITE INTERPRETATIONS | Animal Community: | | |---|--| | Wildlife species indigenous to this site will be a | dded when data is available. | | Hydrology Functions: | | | The runoff curve numbers are determined by fie conditions and hydrologic soil groups. | ld investigations using hydrologic cover | | Hydrologic I | nterpretations | | Soil Series | Hydrologic Group | | Crown clay loam | D | | Kimbeto clay loam (McKinley Co.) | С | | Moncha silty clay loam | C | | Silkie clay loam | С | | Teco variant (mapped in Cibola Co.) | С | | Las Lueas loam | C | | l = = | | | Moriarity silty clay | D | | Moriarity silty clay | | | Recreational Uses: | |---| | This site offers a limited opportunity for establishing small intermittent water areas in the form of pit tanks. It has the potential for hiking, observing wildlife, horseback riding, photography, picnicking and camping. Trail establishment for hiking or horseback riding should be selected with care. Frequently used trails could create opportunities for overland flow to channelize and form gullies. | | | | Wood Products: | | This site has no value for wood products. | | | | | | | | | | | | | | | | | | Other Products: | | | | | | | | | | | | | | | | | ### Other Information: This site is suitable for grazing by all kinds and classes of livestock. Excessive grazing use over a prolonged period will result in a decrease of alkali sacaton, western wheatgrass and spike muhly. Blue grama and galleta may increase initially, but will eventually decrease if the heavy grazing continues. The site then becomes subject to the invasion of broom snakeweed, rabbitbrush and cacti. Ring muhly, threeawns, Russian thistle and tansy mustard increase significantly. The site may become severely eroded with deep vertical walled gullies when plant cover decreases. | Guide to Suggested Initial Stocking | g Rate Acres per Animal Unit Month | |-------------------------------------|------------------------------------| | Similarity Index | Ac/AUM | | 100 - 76 | 3.5- 4.5 | | 75 – 51 | 4.5- 6.5 | | 50 – 26 | 6.5- 10.0 | | 25 – 0 | 10.0+ | ## Plant Preference by Animal Kind: | | Code | Species Preference | Code | | |-------------------|------|--------------------|------|--| | Stems | S | None Selected | N/S | | | Leaves | L | Preferred | P | | | Flowers | F | Desirable | D | | | Fruit/Seeds | F/S | Undesirable | U | | | Entire Plant | EP | Not Consumed | NC | | | Underground Parts | UP | Emergency | Е | | | | | Toxic | Т | | Animal Kind: Livestock | Animal Type: | Cattle | | _ | | | | | | | | | | | | |--------------|------------|-------|--------------------|---|---|---|---|---|---|---|---|---|---|---| | | | Plant | Forage Preferences | | | | | | | | | | | | | Common | Scientific | Part | J | F | M | A | M | J | J | A | S | О | N | D | | Name | Name | | | | | | | | | | | | | | | | | 1 Iuiit | Totage Fielefices | | | | | | | | | | | | |--------------------------|---------------------------|---------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Common | Scientific | Part | J | F | M | A | M | J | J | A | S | 0 | N | D | | Name | Name | | | | | | | | | | | | | | | Alkali
sacaton | Sporobolus
airoides | EP | D | D | D | D | D | P | P | P | D | D | D | D | | Western wheatgrass | Pascopyrum smithii | EP | D | D | P | P | P | D | D | D | D | D | D | D | | Vine mesquite | Panicum obtusum | EP | D | D | D | D | D | D | D | D | P | P | D | D | | Spike muhly | Muhlenbergia
wrightii | EP | N/S | Giant sacaton | Sporobolus
wrightii | EP | D | D | D | D | D | P | P | P | D | D | D | D | | Bottlebrush squirreltail | Elymus
elymoides | EP | U | U | D | D | D | U | U | U | D | D | D | U | | Winterfat | Krascheninniko via lanata | EP | D | D | P | P | P | P | P | P | D | D | D | D | | Fourwing saltbush | Atriplex canescens | EP | P | P | P | P | P | D | D | D | D | D | D | P | | Indian ricegrass | Achnatherum hymenoides | EP | P | P | P | P | P | P | P | P | P | P | P | P | ## **Supporting Information** **Associated Sites:** <u>Site Name</u> <u>Site ID</u> <u>Site Narrative</u> Similar Sites: <u>Site Name</u> <u>Site ID</u> <u>Site Narrative</u> **State Correlation:** This site has been correlated with the following states: **Inventory Data References:** Number of <u>Data Source</u> <u>Records</u> <u>Sample Period</u> <u>State</u> <u>County</u> Type Locality: Relationship to Other Established Classifications: ### Other References: References - 1. Cluff, G.J., B.A. Roundy, R.A. Evans, and J.A. Young. 1983. Herbicidal control of greasewood (Sarcobatus vermiculatus) and salt rabbitbrush (Chrysothamnus nauseosus ssp. consimilis). Weed Science. 31: 275-279. - 2. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheet. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 7 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html - 3. Whisenant, S.G. 1988. Control of threadleaf rubber rabbitbrush with herbicides. Journal of Range Management. 41: 470-472 - 4. Whitson, T.D. (ed.). 1999. Weeds of the West. The Western Society of Weed Science, Wyoming. pp 103 - 5. Wright, H. A. 1972. Shrub response to fire. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/[2004]. Data collection for this site was done in conjunction with the progressive soil surveys within the New Mexico and Arizona Plateaus & Mesas Major Land Resource Area of New Mexico. This site has been mapped and correlated with soils in the following soil surveys: McKinley, Catron, Cibola, Socorro and Sandoval. | Characteristic Soils Are: | | | | | | | | | |-----------------------------|-------------|------------------------|-------------|--|--|--|--|--| | Crown clay loam 3-8% | | Kimbeto clay loam 1-8% | | | | | | | | | | | | | | | | | | Moncho silty clay loam 4-8% | | Teco 4-8% | | | | | | | | Silkie clay loam | Other Soils included are: | Site Description Approval: | | | | | | | | | | <u>Author</u> | <u>Date</u> | <u>Approval</u> | <u>Date</u> | | | | | | | Don Sylvester | 05/09/84 | Don Sylvester | 05/09/84 | | | | | | | Site Description Revision: | | | | | | | | | | Author | <u>Date</u> | <u>Approval</u> | <u>Date</u> | | | | | | | Brenda Simpson | 07/24/02 | George Chavez | 6/10/05 | | | | | | | David Trujillo | 6/10/05 | | | | | | | |